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Abstract

A formulation to include the effects of wall proximity in a second-moment

closure model that utilizes a tensor representation for the redistribution terms

in the Reynolds stress equations is presented. The wall-proximily effects are

modeled through an elliptic relaxation process of lhe tensor expansion coef-

ficients that properly accounts for both correlation length and time scales as

lhe wall is approached. Direcl numerical simulation data and Reynokts slress

solutions using a full differentia] approach are compared to the tensor repre-

sentation approach for the case o[" fully developed channel flow.

1. INTRODUCTION

The theoretical development of higher order closure models, such as Reynolds

stress models, have primarily been formulated based on high Reynolds number as-

sumptions. The influence of solid boundaries on these closure models has usually been

accounted for through either a wall function approach or a modification to the high

Reynolds number form of the pressure-related correlations and tensor dissipalion rate

and predicated on the near-wall asymplotic behavior of the various velocity second

molnents (So et al. 1991, Ha, njali¢: 1994).

A broader based attempt to account for the proximity of a, solid boundary is

the elliptic relaxation approach introduced over a decade ago (Durbin 1991) and

further develof)ed for second-moment closures (I)url)in 1993a, Wizman et a l. 1.996:

Manceau and Hanjali¢: 2000, Manceau, ('arlson and Gatski 2001). In its two-equa-

tion form the K" -f model has been applied to a variety of flows (e.g., Durbin 1993b,

1995: Pettersson Reif et a,l. 1999). The new al)proach outlined here introduces a ten-

sor represenlation for the coml)ined effects of a near-wall velocity-pressure gradient

correlation and anisolropic dissipation rate that asymptotes to a high Reynolds nun>

her tBrln away from solid boundaries through an elliptic equation for the polynomial

expansiol_ coefficients. The development of a generalized methodology for delermin-

ing the l)olynonfial expansion coefficients of representations for the turl)ulent stress

anisotropies by (Gatski and .Jongen 2000) is extended to an elliptic relaxation proce-

dure for these expansion coefficients.

Although the material ])resented here introduces tellSOf rel)reseIll at ions and a ten-

sor projection lllel hodology into the elliptic relaxation formulation, this work can also

be viewed as an inlermediate step ])elweell a fully exp]i('il elliplic relaxation algebraic

Reynolds stress formulation and the full differential elliptic relaxation Reynolds stress

formulat ion.



The predictive capabilities of the new model are assessedthrough comparisons
with direcl, numerical sinmlation channelflow data (Moseret al. 1999). Thesecom-
parisonsinclude both meanand turbulent flow quantities.

2. Theoretical Background and Development

In this section, a mathematical fi'amework is developedfor the Reynoldsstress
transport equationsand the correspondingelliptic relaxation equationwhen a tensor
representationof the redistribution terms is used in the formulation. The melhod-
ology introducesa set.of elliptic relaxation equationsfor tile polynomial expansion
coefficientsof the chosen representation. The r - f model uses the redistributive

lerms in the ellipl ic equations, while the r- .3,_ model uses the expansion coeflqcients

in the elliptic equations. Both models use the lleynolds stress t.ransport eqltations.

2.1 Transport Equations

The lransl)orl of the Reynolds stresses rij (= --U, ittj) iS governed by tile equation

where l:i is the mean velocity, Oi.i is tile pressure redistribution term, _:,j is the tensor

dissipation rate. and D T and T)}'i are ihe turbulent transporl and viscous diffusion,

respectively, hi the development outlined here, it is best to have Oij given by

= - "i ,-v-- + - _-/i, (2)
oij tti f)xj " Ox; 3 i).rt.

so that the trace ot' the pressure redistribution term is zero. In the apl)lication of the

elliptic relaxation method, it is also necessary to account for the effect of the dissi-

pation rate anisotropy a.s the wall is approached. This accounting for the dissipation

rate anisotropy is accomplished (e.g., Manceau 2000) by a relaxation of the dissipa-

tion rate anisotrolu to its wall value, which is assumed to be equal to the Ilevnolds

stress anisotropy. This ass/mq_t.ion allows the Reynolds stress tra.nsport equation in

(1) to be written as

Dr_j OUj
-- --rik-- --

1)l O.r_.

vchere

._..7

Oil vii _ ,[.)!,
-"_*--O.c_.+ cK.f,i. _ _ + T_r. + ,,, (a)

_-h'.['i i = ®i.i -- 2__ ( dij - bi5 ) , (,1)

with tile l:leynolds stress anisotropy bi., and dissipation rate anisotropy di.; defined a.s

b;, = ri.i c_ij eli_ __ d-ij (_ij (r) )
• 21( 3 " "2C 3

Tile original scaling of the relaxation function fi.i was solely through the turbulent

kinetic energy h': however, Manteau, ('arlson and Gatski (2001) have recently shown



that all added dissipation rate factor, e, to the scaling (mKf;j) elilllilla,ties all umvanted

anll)lificaliou effect inherent in the original scaling.

Equal.ion (3) is closed when the model for the |.ttrl)tl]ent t ransI)ort. _ is used. In

previous elliptic relaxat.ion studies that tlSC__Ithe Reynolds stress transport equations,

the viscous diffusiou a ud turbulem transport terms were modeled as

with cys_= 1.0 and C, = 0.15. The composite thne scale

g-. = max r, ('_,, . r = --. (7)
a

where ('_l,- = 6 determines the switch t.o the t(ohnogorov time scale (u/a) 1/2 so that

the turl)ulent time scale will not vanish as the solid boundary is apI)roached. Away

from tile boundary, tile composite time scale a synlpl.ot.es t.o tile inert.ial scale I(/c.

hi the two-dimensional flow considered here, solutions were ol)taine(l for the wit

and r22 nornlaI [{eynolds stresses and the 7"12 shear stress. A transl)ort eqtlaI,iOll for

the turbulent kinetic energy was obtained fl'om one-half the i,l'a,ce of Eq. (3) and was

solved for in lieu of the third hernial stress ra:_,

-r - m+ + ,,v-z,. (s)
o"K

where T _ = ri/,.Ol;i/Om,,. The nlodeled transport equation for the turbulent dissipation

rate c needed for closure is given t)y

De _ 1 C:__7'--(;_2: + _ ( .--r,.-- + .V2e (.9)DI r,. c,o " O.r_.

where fro = 1.3, C..1 = 1.44, ('_2 = 1.83, with

'* -el 1 "GI- O 1 ¢11 0.09. (10)

Not, e that this form of the dissipation rate equation (Durbin 199I) has int, roduced the

conlposite linle scale into both tile production and destruct.ion of dissil)alion tel'ins.

2.2 Elliptic Relaxation Methodology: r-f Model

The rescaled elliplic relaxation equation is driven by the high Reynolds ntunber

fornl el the pressure-st, rain rate correlat, ion II and a contribution from l iie t/evnolds

stress anisotropy 2c<.bij (away frolll tile wall the dissil)ation rate is a,ssuilied t,o be

isotropic di,; = 0). This Colnbination results in an elliptic relaxalion equation for .['ij

given 1)\' (c[. Mancea,u alld llanjali_ 2000)

1 (lli') + 2c,-bi.;) -z ,f/' (11)



where
/q

and the relaxalion scales are defined as

(12)

with ('/, = 0.16 and ('I,t,- = 80. Previous implementations of tlle elliptic relaxation

procedure (Manceau and Hanjali_ 2000) using the Speziale, Sarkar and Gatski (SSG)

pressure strain tale model (Speziale et al. 1991) used the full nonlinear form. The

linear form of the SSC model implemented here is given by

-I (4 (b,.a.l'l,_.j - I_I:ikb,_._) (1.,1)

with C ° = 1.8, C 1 3.4 C= , 2 = 0.37, (a = 1.2,5, and ('4 = 0.4. Note that since the

linear form of the pressure-strain rate model is used here, the value for CL differs

from that used previously (('L = 0.2, see Manceau and Hanjali(: 2000) for the form

of the elliptic relaxation equation given in (11).

Boundary conditions are needed for the fi5 and are determined, in the vicinity

of the wall, by the balance of the redistributive term by the viscous diffusion of the

Reynolds stresses resulting in Table 1. Only the 22- and 12-components of f have

determinate solutions to the near-wall balance of the stress transport equations. [:or

the remaining colnponeuts .fll = .113:'_= -.t"22/2 are used as boundary conditions to en-

sure that ,[;j is traceless (Manceau, Carlson and Gatski 2001). Symmetry conditions

were applied at. the centerline.

In the current work. one of the goals is to develo I) a methodology for incort)orating

a tensor representation for the relaxed redistribution function .fi.i- Once developed and

vail(fated this same l)rocedure can be used in COlljUllClioll with tensor representations

for the lieynolds stress anisotropies as well. Such a combination would then yield an

elliptic relaxation explicit algebraic stress model. The details of the representation

for the Reynolds stress anisotropy will not be addressed in the current work, bul

deserves further work. As will be discussed in Sec. 2.a, such a representation would

be consistent with a linear pressure-strain rate model.

2.3 Representations and Elliptic Relaxation: r- J,, Model

Although tile elliptic relaxation formulation has ah'eady been applied within a full

differential Reynolds stress model, a question arises about what role tensor represen-

tations can play within the [ranlework of the elliptic relaxation procedure.



'Table1. Boundary Conditions for li_e ,fij Tensor

(!Oml)onen( \Vail (!('n(erline

1

.I'll .j.f2_,., Symmetry

--20l)2722 1
.1"22 Sy/l_nlel,/'y

9 4

aT,.!/1

1

.l_:, 9"122.... Svlnnletrv

--90I'2 T12 1

./',2 0
'> 4

z 7,._.11

Tile differential elliptic relaxalion equal.ion for .1";) call I)e o|)tained from the inte-

gral expression (e.g. Manceau and tim\jail& 2000)

.Lj(x) =
_(x)A(x) {0,_(x) - 2e(x)[d:,(x) - bi,(x)]} = £

where

[ ...ix.x'>.
[e(x)K(x)J

(1.5)

, _, , ,, Op , 2_ ,20]),x,v,.;(x.x') = -,,_(x)V _ tx') - ,,jtx)V_(x )+ 5<j,,_,(x)V _t )

velocity--pressure gradient correlation

+7, \0;_,l(x)V:0"J(x') + ' )V2 (x'

tensor dissipation rate

,:7(X) !llt(X)_.72¢lj.(Xt)_. _ _ll(X)_.72111(Xt)] } (J(J)l,(x) _ - .
Reyllolds stress tellsor

and (;s2(x,x') is approximated by the free-space Greens function G'a(x.x') = (4rrr) -1

wilh ," = IIx' - xll. The a_.icontribulions to both the dissipa.tiol_ rate and lleynolds

stress anisolropies cancel so that the only remaining contribul.ions aro the tensor

dissipation /'ate and 1Reynolds stress (.ells(.)/'. The tensor func(ion ./)j and .7",.i can be

represenled by polynomial expansions of basis lensors just a.s (.he associated Reynolds

slress anisotropv (ensor bii has been. For such a basis given by 7'('")(x) (m = 1..... N)
*. • -- l] X *

the fol{owing representations are assumed:

N

.£(x) = _ :_,(x)r;_/)(x), (17)
/=1



F,_(x, x') - t'_j(x, x') N
• c(x)K(x) - _ %(x' x')Ti_')(x)" (IS)

,_=1

1(,,_)
A tensor scalar product (denoted by [ : ]) between each basis tensor 7i i (x) and

ill(, representations given ill Eqs. (17) and (1S) can be formed, and this leads (using

matrix notation for convenience) to

N

y] _,(x)[TI0(x):T'"')(x)]
I=1

x') T ('''t ] 'x. : (x) (;a(x, x')

N

=Z (,:,)
n = 1 "

Sillce the functional dependency of the indicated scalar product depends soleh' on x.

Eq. (19) can be wwritten as

@,(X) = ./fl d3x'%z(x, xt)Ga(x, x'). (2O)

The modeling of the scalar function '}.,_(x,x') follows that established previously for

the elliptic relaxation approach, that is

%(x,x') = %(x', x') exp ( _-_- )-- o (21)

where, in general, the '},_ coefficients can have an associated length scale uniquely

detined by the form given in Eq. (la).
With this model. Eq. (20) can be rewritten as

,J,,(x) = L (tax"}'" (X', X') exp (-'r/L,_)' 4rcr
('22)

This equation leads directly to the differential counterl)art

1 12V2_,, 5'. (x). L_ 3,_(x, x) , ,, (2a)

where _[i(x) are the expansion coefficients from tile tensor representation of a quasi-

homogeneous form of f. Since the dissipation rate is assumed to be isotropic, f is

COlnposed of the quasi-homogeneous form of the pressure-strain rate correlation and

a contribution due to the Reynolds stress anisotropy. The resulta.nl expression for

/4h(x) is given by

N

Z <(x)[T"(x)..T'""(x)]- '
,e(x)K(x)

[n_(x):T(m)(x)]

c(x)h(x)
_'7_= 1 .... N,



where ill(" quasi-homogeneousform of tile pressure-strainrate mode/HI! is given by

=-e_- I' "2+ -- b+K('2S+ h'(':_ bS+Sb- b:S]I

-h'('4 (bW- Wb). (25)

Nole that a comparison of Eqs. ([4) and (25) shows that tile return-to-isotrol)y tel"nr

proportional to b has been modified. The faclor :7,,now influences the entire term and

the contribution from the Reynolds stress anisotropy 2gcb to the relaxation fuzwtion

f is now included in this (slow) term cont.ribuliolr to 1-I_'

One of the improvements in tire' current elliptic relaxation formulation is that

the scaled relaxation timer ion f defined in Eq. (.1) is CO(l) in the log-layer region.

This scaling negates lhe adverse influence of the elliptic operator in the log-layer thai

occurr'ed ill t/re origilml (Durl)in 1.q!)3a) formlllal.ion. In order to retain this benign

effect in tim tensor representation formulation used here. it is necessary to ensure thai

the expansion coefficients i)',, also have this neutral effect.

Previous rel)reselltalions for the t/eynolds stress anisotropy tensor have used basis

lensors of the form S, SW - WS, and S _ - [S:S]I/3. In lhe log-layer, where the

velocity gradient has a 9 -z behavior, this choice of basis i.ensors wouht require thai

the corresponding extm.nsion coefficients ill./_2, and/:_a have a ,q, 92, and :q2 behavior.

respectively, in lhat region to ensure lhat f behaves as O(1). lrnforlunately, given

thai behavior of the /:1,,, the amplification effec! would now effect lhe ;4,, and the

sought-after CO([) behavior for lhe f is Iosl. For the fully developed channel flows of

interesl, this problem can be easily circumvented by using a normalized basis set, of

the form
I

T(r)= S', T_2)= S'W'-W*S', T(3)= S .2- :_, (26)

where S" = w* = This ,,or,,,alizatio,, ,,o,,' ,,rak,'s the
behavior of both the expansion coeflicients and basis tensors CO(I) in the log-layer,

which then precludes any adverse eff>('I of the ellil)li(' Ol)erator ill the relaxation

equation (23).

Bounda.rv conditions tbr the /_,_ expansion coefticients are required. (:onsistent

with the boundary conditions for the tensor function .fi.j, the corresponding ;_,, bound-

arv conditions are listed in Table 2 as functions of rii (see A1)pendix A for details).

The equivalence of the elliptic relaxation of the expansion coefficients i)',, given

by Eq. (23) with the ellii)tic relaxation of the function ./;j. given by E( l. (11) can be

readily shown wilh the current normalized basis. The solution to Eq. (24) is easily

obtained a.s

(¢, /, = I ([nll:T(,,],' 1, _2 .... :_] oh"

1 (k/_ 2 'i2, .2(//c22- err), :}( cll _- /1¢.22)) • (27)- _ h" II[_ 1 l, I1 _' I1 I, _,



Table 2. BoundaryConditions for .3_

A,_ \Vail Cent erline

r_ I

32

,:'33

-20x/'_21_2 rl21(i) [IL:T(1)} f_

-z 4 oh

-15_ _2 7'_21(1) [IL:T<2)]/_

-2 4 CA":,,,Y(l)

--301/2 r221(1) [1-Ic:T(a)] h

=2 4 g/\"

If the tensor representation Eq. (17) is applied to fi_, then the 3,, solution from Eq.

(27) would yield for the components of .f_*;

1

-- _A" c33/"

A comparison of the right-hand side of Eq. (28) with the right-hand side of Eq. ( 11 )

shows that the two are equivalent. (The reader should recall from the discussion

following the definition of lI) in Eq. (25) that the form of the slow term was slightly

modified h'om the definition given in Eq. (14). Witti this change taken into account,

the exact equivalence Eqs. (11) and (28) holds.)

3. Results and Discussion

All flow ('alculations were carried out on full); developed turbulent channel flows.

The equations that were solved were scaled in wall units with friction Reynolds

number Re_ based on channel half-height and friction velocity at the wall. A one-

dimensional finite-difference algorithm described in Appendix B was used for all coni-

put al, ions.

As shown ill Sec. 2.3, the ret)resentation methodology thai ilas l)een develol)ed

yields an elliptic relaxation formulation equivalent to the elliptic relaxation of the ten-

sor function fii. While such tensor projection methods have been used in conjunction

wi*h nonlinear algebraic equations, the application here also validates its use with

differential operators.

Figures 1 3 show the predictive accuracy and equivalence of bol.h lhe rii -

fii and 7-,., -_t,_ approaches. The flow field is the fully developed channel [low at

/_e, = 590 (Moser et al. 1999). The figures include both a linear and log scale in

the wall normal direction. As can be seen from Fig. 1 for the mean velocity, both

lhe distribution across the channel and the near-wall asymptotic l)ehavior agree with



the direct numericalsimulation (DNS)data. Excellenta.greenwntwith the DNS data

25

y y

Figure 1. Mean velocity dist.ribution across channel at t{'c¢ = 590: (a.) log-linear scale:

(b) log-log scale.

across the channel is also shown for the shear stress profile (Fig. 2): however, the

asymptotic approach to the wall is greater than the theorelical estimate of O(y:_).

The discrepancy becomes apparent for values of g < 1. This result is in contrasl

to tile predictions for tile turbulent kinetic energy shown in Fig. 3. In this case

1

0.8

0.6

0.4

0.2

} "_ DNS i

100 200 300 400 500 6000 10'

Y Y

Figure 2. Turbulent shear stress dislribution across channel at. He_ = 5.q0: (a.) linear

scale: (b) log-log scale.

the near-wall asymptotic behavior is consistent with the DNS resulls but lhe overall

values are slightly lower across the channel than the DNS data. Overall, the predictive

results for the mean velocity', Reynolds shear stress and turbulent kinetic energy are

quite exceptional and show that the method can be calibrated to provide excellent

predictions of this flow field. In actuality, since the models are formally equivalent,

no changes are required in any of the calibration constants.

Since a full differential Reynolds stress model is used for tile turl)lllellt velocity

field, it. is possible as well as insightful to further examine the conll)otlent, stress

l)rediclions. Figures 4 and 5 show the rll and 7-22 component stresses. Since tile

9
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Figure 3. Turlmlent kinetic energy distribution across channel at /?(, = 590: (a)

linear scale; (b) log-log scale.

near-wall asymptotic behavior 0(92) is dominated by the rtl (and ra3) components,

it is not surprising to see from Fig. 4b that the near-wall asymptotics closely match

the I)NS results. The O(9 4) behavior that characterizes the DNS results for the 7'_.2

component (see Fig. 5b) are very closely replicaled by the predictions. Fig. 4a shows

thal across the channel predicted results were lower _han the DNS results for the rll

COlnl)onent. For the r_._ COml)onenl., however, the predicted peak value was higher

lhan the DNS results, but the predicted values were lower over the remainder of the

I ' ' ' I ' '4

channel, as seen in Fig. 5a.

8 ,, i

6

5

--- 4

3

2

1

0 100 200 300 400 500 600

Y

1 /0 .... ..........

10 ........... _ ........ ' ................. '
104 10 ° 10 t 10: 10"

Y

Figure 4. Reynolds normal st.ress component rxl distribution across channel at He,

= 590: (a) linear scale; (b) log-log scale.

An interesting assessment of how well the elliptic relaxation formulation models

the redistribution terms across the channel can be obtained from Eq. (4). The

quantily cAl;, i obtained fl'om the explicit representation given in E t. (18) and the

elliptically relaxed ,1,, fl'om Eq. (23) are plotted in Fig. 6 along with the quantity

od-2_-(ds.i-bi,) obl ained from the DNS data. As Fig. 6a shows, the cK.ft2 component

produces the corresponding DNS results very well in the near-wall region and in the

10
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Figure 5. Reynolds normal stress colnl)onent 7-22 distribution across channel at. H_

= 590: (a) linear scale: (b) log-log scale.

outer layer region toward the cent.erline. Between these two regions, the peak vahle

of the computations greatly exceeds lha.t of the DNS. The normal gff.ftl and efffe2

components show an even poorer prediction of the DNS results. Ill these cases, only'

I he outer layer region is correctly predicted: whereas, over tile resi of the channel the

qualitative and quantitative predictions are generally poor. While the results of this

a priori validation of the elliptically relaxed tim<lion gK.]}i are disappointing, it, is

clear thai the actual predictions of the fully modele(l set of e(tuations are generally'

very good. Thus other modeled terms ill the formulation are able to account for any

discrepancies ill the prediction of the redistribution term.

As Fig. 6 shows, all compollents of the elliptically relaxed redistribution term

correctly reproduce the DNS data in tile outer laver of the channel ttow but <lifter

extensively fl'om the DNS dala when reproducing the inner laver. Since the elliptic

operator tel'Ill (-L2_ r2) is responsible for the deviation of the i_,,, from their quasi-

homogeneous ._'/' forms, it is worthwhile to quantify" the size of the region across the

channel that is atTecled by this term. Figure 7 shows lhe distribution of -LeV2,3,

across the channel for the three expansion coeftqcients (,_ = 1,2, 3) at three different

values of Re:,. In tile inner layer, the wall unit scaling basically collapses the results

for all vahles of Re,. with tile exception of the 31 component where the results in the

near-wall region show some dependence on R_,; this sensitivity to f?e_ is not found in

tile other COml)onent.s as Figs. 7b and 7c show. The eftect of the elliptic operator falls

to zero at..q (wall unit) vahles around 102. The overshoot in the outer laver shown in

all the figures is attributed to the asymptotic behavior of the energy dissipation rate

c in lhis region. Both Ve.d,, and e decrease (L increases); however, the dissipalion

rate e decreases faster (L increases faster) than the corresponding decrease in VeiL,.

The variat.ioll with t?c, in this region is nol surprising siiIce the wall unit scaling is

not the proper scaling for this region.

11
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at R_ = 590: (a) 12-component. (b) ll-('omponent, (c) 22-component. For all

colllpOllellts vii--3, results are a[¢[ii, and DNS resllll.s are Oij-2g(dij-bi,j ).
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(b) _]2-coefficieId. (c) J.?coellicient.
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4. Summary

A methodology has been developed that inlroduces a polynomial representation

for tile tensor redistribution function J)j. An elliptic relaxation equation, analogous to

(,he .['i._relaxation equation is tbrmulated ['or the i)olynomia/expansion coetficients/_,_.

The new 1)redic(ion method is demonstrated on a fully developed channel flow problem

and gives similar results to tile I)revious elliptic relaxation reel.hod for ./'//. A formal

equivalence is established between the elliptic relaxation of the tensor function .f,/and

its lensor representation. Although the prediclions of the nleaNN velocity and turbulenl

stresses are generally accurate oveN" the channel, an a priori assessment shows thai

lhe currenl formulation does nol model the redistribution well. Such resulis are

enlighlening but are nol uncommon: the results reflect the fact thai in modeled

closure schemes, a combination of modeled terms combine to yield predictions of

quantities such as the mean velocity and Reynolds stresses.

\Vhile line theoretical approach developed here does not result in a reduction

in computational cosl, il does introduce a new methodology that is requisite for

developing elliptic relaxation explicit algebraic stress models. The next step in the

deveMpment of such models will be to introduce representations for the Reynolds

stress anisotropies and analyze tile effects of modeling the turbulenl trausporl and

viscous diffusion terms consistent with the approximations made in tiN(" formula! ion

of algebraic stress models.
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Appendix A :3,, Boundary Conditions

The expressions for the ,4,l boundary, conditions are derived from the basis tensors
(.)

Ti. i used in the representation of ,[}j

+

,._T(2) _, -r,(a}3 f22 = :.#2s22 -I-< 3122

•1;,= Z  ,,g7
• " = ,a TCJ)

",=1 .f:_3 :.3x :3:_

,f, 2 = .!417'_J)

(Al)

Table 1 gives lhe corresponding boundary conditions for these ,fij conlponents. The

boundary condition for i_l is directly proportional to the fie boundary condilion and

is given by

__ .fl 2.,,, k/_d.fl 2.. ' --20 V/c22U2r12

c ,,,,9( 1)

The coefticient )J:_ al)pears ill all three exl)a, nsiolis of lhe diagonal terms of .[U" If

fij is traceless, a unique expression for Aa a,t tile wall will be obtained. From the

representation for f'3:J. :4:_,,. can be immediately written as

.lh:_.,,. - 3 0z:27-2.2
&._,- - 3f3_..- (A3)

.F(:3) __ 4
:_3.., ": .'if( I )

The represenlations for .fll and ,/'22 can be used lo ol)iain a,n equivMent expressions

for the ,33 l)oulldarv condition

r T(_) r 7,(2)

':_:_'" T(:_) W(_) w(a/ -s,/2) 7,(3 ) = -3f_3.,,. (A4)
22.w--ll.w- Xll.wX22,w "33,w

With ,3-<.. known, lhe representation for either .fli or .f2.2 can be used to ol)lain ,"J2,,,,.

From the f22 represelitalion, the wall boundary condition on ,"_2 is given by

_ -- "22.w: :t,w]
IU 72_(2)

l A ct1\

i/_21 _ I
+

+{2) 9 -2 4- c ,,,Y( l )22,.'

(AS)
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Appendix B Numerical Solution Methodology

A one-dimensionalfinite-differencecodewasusedfor all coml)utations. All equa-
l.ions were normalized by tile bulk viscosity and friction velocity (i.e., wall units).
The differencing template wasnode-centeredwith clustering close to tile wall using

an exponential stretching flmction. In terms of the scaling used for the channel flow

calculations, the 500 node grid had the first point at a height of 0.1 wall units. The

channel Reynolds number He:r determined the channel grid heighl. The A and e

equations were implicitly coupled as were the rij -./)a equations, and lbr the second

model, the rij -3,, equations. The variables IL l(,e and rij were solved in a time-

dependent mode, while tire fii or .:4l equations were not (i.e., 5t = 0.) All variables

were ut)dated at each time step.

In this appendix, the terms with the superscript (, + 1) denote variables that

were implicitly solved for and the terms with the superscript. (t_) were variables used

explicitly at each iteration. The ]{eynolds stress equations coupled implicitly wilh

either the fo or i_,, equations were solve(/first, with the nmmentun_, turbulent kinetic

energy and dissipation rate equations solved second. An updated r12 was used in the

momentuln equation, but the eddy viscosity in the turbulent transport terms of all

the equations was not updated until after the completion of each time step. Typically

solutions were re-started Dora previous turbulent flow calculations.

_l'he s3_n]t)ol .Ill dellotes the height of the first node from the wall and e,,, dellol.es

the boundary condition value for e. The discretized form o[' the governing equations

are as follows. For the r - f model:

(n) [p{n) (,,) -{,z)r(n+l)
r !_'+1_ = r,.i +At +g A .fi5

J [ I./

T!_'+I) _-('u) + 1 +

l_--:(r,,)_ @ o"f,- )
(B1)

],(n+l I L(n) 2 d2 /(,,+1) 1 (I]!k (")
•,ij -- d9---7,i i g(")h(") k ,a + 2&,bij) B2)

The boundary condilions were implicitly writl.en for the fo as

{o+1)

• {,,+l) = _20 r_2 ,v_
.122 (,_)2 4

F,,. Yt

Ba)

(.+1) ui

,/11 u T22 "•(,,+l) = 10 (.)2 a
, Sw Yl

B|)

/.(_i+l)
,¢12

= -20 !;'
1") 2 4

,,, ,:7,,, .ql

BS)
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For tile 7"-3_ model;

•_j =_. +__t . +: k(-I(_,, .)
l d

'J _ _-( ) + + --
kt,,I _ _ o-_,-/ @ .' )

d_ "+_) _ L(,,) 2 d e , (.+_)
d:_ '3l - z('_)k'(') [Tt0:T(,,_)]

Sinfilarly. the bouMary conditions were implicitly willten for the ,,'it as

!,31,+1) ,-.--r_ +1) [= -20V'2 "'

(n+l) _71

r7 2,':7_''+1) : --15 _(,,F.
w _., ffl

(n+t)

.q(,_+l)l v'J2 y_....3 = --30 (-F .l
u, ":7"' Yl

I%r ,v_, A" and c:

('("+_) = (:('*) + ._Xt <t (,,+,/_)] _<::___Z'l
+ _/,r(a+l) + dff 1"2 J" dd" = lb (

I "((-,"/" )lk (''+_) = K ('') + A/ 7:'-('') - c (''+_) + _ I + o-s,- i @ k'(''+_)

n) +_ l+ <,,74v_ )J
with

= .=l 1 +ol m(")J" tit = (,7'22 E- •

The I)oundarv conditions were implicitly written [or g a.s

[(( ;._+ 1)
_7('+1) -- "2

(B6)

(f37)

(BS)

(B9)

(B10)

(Bll)

(B12)

(B13)

(B14)

(BI._)
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